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Abstract
This paper introduces a method for lightly supervised discrim-
inative training using MMI to improve the alignment of speech
and text data for use in training HMM-based TTS systems for
low-resource languages. In TTS applications, due to the use of
long-span contexts, it is important to select training utterances
which have wholly correct transcriptions. In a low-resource set-
ting, when using poorly trained grapheme models, we show that
the use of MMI discriminative training at the grapheme-level
enables us to increase the amount of correctly aligned data by
40%, while maintaining a 7% sentence error rate and 0.8% word
error rate. We present the procedure for lightly supervised dis-
criminative training with regard to the objective of minimising
sentence error rate.
Index Terms: automatic alignment, grapheme models, light su-
pervision, MMI, text-to-speech

1. Introduction
Recent advances in HMM-based text-to-speech synthesis (TTS)
have made the use of large volumes of imperfect, natural speech
data an essential aspect in developing systems for new speakers,
dialects or even whole languages. When sourcing expressive
speech data for system building, we have the choice of record-
ing the speaker under a carefully controlled conditions, or else
to manually transcribe and annotate several hours of an existing
speech corpus. Neither option is efficient for developers seeking
to control the selection of multiple speakers or speaking styles
for building synthetic voices.

Another disadvantage of the conventional speech databases
is the fact that they are in general recorded as individual utter-
ances, with no correlation in between them or across a para-
graph or recording session. To alleviate this problem, the re-
search community has recently shifted focus towards the use
of audiobooks as a readily available, more expressive speech
resource [1, 2, 3, 4, 5, 6, 7]. However, the use of audiobook
data, not specifically recorded for speech technology applica-
tions, requires a reliable matching transcription to be obtained.
The use of an existing automatic speech recognition (ASR) sys-
tem for this purpose has been proposed by many researchers
[3, 8, 9, 10, 11, 12, 13]. But these methods are applicable only
to languages where the resources for training a good speaker-
independent ASR system already exist. For an under-resourced
language, the only audio data available may be audiobook data
for the target speaker. In this case, a method is required which
is able to use only this data, with possibly unreliable transcrip-
tions, with no bootstrapping from other data. Some of these
approaches include the detection of specific landmarks in the

audio, such as in [14], or the use of TTS systems for speech to
speech synchronisation [15]. The latter also requires the exis-
tence of a TTS system framework in that language, or at least
specific language knowledge.

The approach taken in this study follows from our previ-
ous work [16] where we used lightly supervised acoustic model
training, somewhat similar to that in [17], using only grapheme
models instead of phone models, under the assumption that a
manually-created phone dictionary may not be available for an
arbitrary new language. This makes the alignment problem
harder, since grapheme-based acoustic models (AM) perform
worse than phone-based ones [18]. In our earlier work, the suc-
cess of the method relies on us making a conservative selection
of data where the automatically-retrieved transcription is judged
to be reliable, using the poor acoustic models.

This paper investigates methods for improving the perfor-
mance by the use of discriminative training of the grapheme
models. Although the use of discriminative training – using,
for example, the Maximum Mutual Information (MMI) or Min-
imum Phone Error (MPE) criterion [19, 20, 21] – is widespread
in ASR systems, it is not common in TTS applications, where
the generative nature of the HMMs is important. However,
methods such as MMI are known to improve on Maximum
Likelihood (ML) training where the underpinning model cor-
rectness assumption does not hold [22, 23], a particular problem
for grapheme-based models. Furthermore, as we discuss in 3.1
the MMI criterion is better matched to the objective of minimis-
ing SER – this is important, because in TTS applications, due
to the role of long-span contexts in model training, it is more
important to obtain utterances which have wholly correct tran-
scriptions [24].

The paper is structured as follows. In Section 2 we briefly
present the speech and text alignment method used, following in
Section 3 with a description of the acoustic model building pro-
cedure, emphasising the advantages of discriminative training
in minimising the sentence error rate. Error rate improvements
and amount of data aligned using the discriminative training
method are then showed and analysed in Section 4. Discus-
sion and conclusions of these results are presented in Sections
5 and 6.

2. Low-resource alignment of speech and
text data

In our previous study [16], we presented an unsupervised, lan-
guage independent method for aligning speech data with im-
perfect transcripts. The method relies solely on the available
speech and text resources, and uses a highly restricted word net-



Figure 1: Word skip network design.

work to perform a Viterbi alignment with the poor grapheme-
level acoustic models for each segment. This word network,
which we term a skip network is built using the available text.
Based on the average word duration computed from the speech
data, we estimate a broad text window (approx. 2000 words)
around the hypothesised utterance transcription. The core prin-
ciple is to allow the alignment to begin or end at any point in
the text window, whilst constraining the word ordering to match
word strings in the text, up to a maximum of 2 word deletions
or skips. Further, network paths not found in a bigram language
model derived from the same text are removed (Fig. 1 illustrates
the network). This network imposes much tighter constraints
on the output than the traditional biased language model ap-
proaches such as [9].

Starting from only 10 minutes of manually transcribed
speech from the data to be aligned, we built a first set of poor
grapheme-level acoustic models. Using the skip network, we
run the acoustic models over the entire speech data. A confi-
dence measure for the aligned data is obtained by comparing
the acoustic scores of the recognised output, using different de-
grees of freedom in the skip network: a network which allows
no skips, and a network which allows at most 2 word skips or
deletions. The confident data is then used to retrain a new set of
acoustic models, and the process repeats. After two iterations,
we were able to extract 54.1% of utterances with high confi-
dence, with the scores of 7.64 % SER and 0.5 % WER on the
recovered text.

Some light pre- and post-processing of the data is per-
formed (see Fig. 2): text parts which we suspect the reader omit-
ted, such as the licence agreement and table of contents were
discarded; because most of the errors were caused by sentence
initial or final short word insertions or deletions, we compared
the recognised text with the text-based sentence segmentation,
and inserted or deleted the words which did not correspond to
it.

3. Acoustic model training
3.1. Discriminative objective functions for SER minimisa-
tion

In conventional maximum likelihood training for HMM-based
TTS systems, we aim to find parameters θ which best explain
the training data, in the sense of maximising, over all training
utterances, r, the joint likelihood of acoustic observations Or
and word sequences Wr . This leads to the objective function

FML(θ) =
X
r

log pθ(Or|Wr)P (Wr) :=
X
r

Dθ(Or,Wr)

(1)
where Dθ(O,W ) = log pθ(O|W )P (W ) is a discriminant
function. In contrast, discriminative training seeks to explic-
itly consider the classification decisions made by the resulting
model. If the objective is to maximise the number of completely
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Figure 2: Flowchart of the training and alignment process.

correct sentences, minimising SER, a natural choice of objec-
tive function is the Minimum Classification Error (MCE) crite-
rion [25], considering the error on a complete-sentence basis.
This function is, however, difficult to optimise. An alternative
is to maximise the margin Er by which utterances are correctly
classified,

Er = Dθ(Or,Wr)−max
W

Dθ(Or,W ) (2)

which leads to the objective function

F (θ) =
X
r

Er (3)

≥
X
r

h
Dθ(Or,Wr)− log

X
W

eDθ(Or,W )
i

(4)

=
X
r

log
pθ(Or|Wr)P (Wr)P
W pθ(Or|W )P (W )

= FMMI(θ) (5)

where we use the softmax approximation to derive a lower
bound that is easier to optimise. This is the well-known MMI
criterion for discriminative training. It can be shown [22, 26]
that the expected error rate using MMI-trained models con-
verges to the model-free expected error rate as the amount of
training data increases: in other words, MMI does not require
the correct generative model to be used in order to be effective.
In practice, the acoustic probabilities in Equation 5 are scaled
by the inverse of the language model scaling factor; the sum
over all wordsW in the denominator is computed over a lattice.

3.2. Lightly supervised MMI training

For the practical application of MMI training in the low-
resource, lightly supervised setting, a number of issues must be
considered. Firstly, since the MMI objective function is based
on the difference between numerator and denominator terms for
each utterance r, it is important to select only utterances for
which we already have a confident text alignment. This prob-
lem has been considered by [27]. Secondly, we must consider
how the the denominator lattices should be constructed. In ASR
applications, a weakened version of the language model used
for recognition would be used: for TTS, there is no such model,
and for a new language, we may not have good coverage to
build one. An alternative is to generate denominator lattices
over graphemes, similar to early approaches for discriminative



training for ASR, such as [28], where phone-level lattices were
used.

In this work, the confident utterances were selected using
the alignment and confidence measure described in [16] and for
which we showed a WER of less than 1%. For denominator
lattices instead, we compared the use of both word-level and
grapheme-level lattices. Both word and grapheme level training
used a bigram language model derived from the original text.
But for the grapheme-level lattices, the text was first converted
into grapheme sequences. Details of the full implementation are
given in Section 3.3.

3.3. Training procedure

To test our hypothesis, we built 5 different types of acous-
tic models starting from the five-state, left-to-right, mono-
graphemes with eight mixture components per state, and no
state tying.

The first step in building the final acoustic models was
to extend the mono-grapheme models to tri-grapheme mod-
els, using a standard procedure. The list of tri-graphemes
was extracted from the text, so the models will not generalise
well to unseen text, but are adequate for aligning the available
text. Though to reduce over-fitting, we model only within-
word context–this also reduces the number of models. Eight
re-estimations were performed, using the confident transcripts
of the mono-grapheme ML trained models.

As discussed in Section 3.2, for discriminative training two
approaches were selected, one using word-level lattices, the
other using grapheme-level ones. For the word-level train-
ing, denominator word lattices were built by running the tri-
grapheme models with a bigram LM derived from the origi-
nal text, over the training data. Numerator lattices were gen-
erated from the approximate transcripts obtained in the align-
ment process. For the grapheme-level training, the entire text
was converted into grapheme sequences and a grapheme lan-
guage model was built. Numerator and denominator lattices
were obtained in a similar way to that presented above. Both
word- and grapheme-level training were applied to the mono-
grapheme ML models. And only word-level lattices were used
to re-estimate the tri-grapheme models.

The generated lattices and the approximate transcriptions
were used to find the grapheme model boundaries and produce
denominator and numerator model-marked lattices. The MMI
models were obtained by re-estimating the ML models over 8
iterations, with a grammar scale factor of 30. The schematic
diagram of the entire AM training process is presented in Fig.3.

4. Results
In order to test the lightly supervised discriminative training
method, we used an audiobook of A Tramp Abroad by Mark
Twain,1 for which the GOLD-standard sentence-level segmen-
tation and transcription was kindly provided by Toshiba Re-
seach Europe Limited, Cambridge Research Laboratory. All
SER and WER figures are computed with reference to this tran-
scription.

We first investigated the effect of using poor initial align-
ments on the effectiveness of MMI training, as well as the quan-
tity of training data. To do this, we applied MMI training to
initial ML-trained mono-grapheme models using different ver-
sions of the reference transcription. Table 1 presents result with
four cases: GOLD denotes the entire audiobook data with the

1http://librivox.org/a-tramp-abroad-by-mark-twain/

MMI training

Grapheme-level

Tri-grapheme 

re-estimation

MMI training

Word-level

Tri-grapheme 

re-estimation

ML 

Grapheme
1

ML

Tri-grapheme
2

MMI

Grapheme
4

MMI

Tri-grapheme
5

Tri-grapheme 

MMI Grapheme
6

MMI

Grapheme
3

MMI training

Word-level

Figure 3: Schematic diagram of the acoustic model training
method.

Table 1: The influence of the amount and quality of train-
ing data transcription over the accuracy of the grapheme MMI
model.

Training Data SER WER
[%] [%]

GOLD 17.62 2.29
CONF 17.40 2.24
ALL 17.80 2.26
IT0 19.50 2.49

ground-truth transcriptions; CONF is only the confident utter-
ances selected by the alignment procedure using the ML mono-
grapheme acoustic model (approx. 54% of the data); ALL is the
entire data with transcriptions obtained using the ML mono-
grapheme acoustic model; finally, IT-0 represents the data ob-
tained using the very initial ML acoustic model, which was
trained on only 10 minutes of data.2 From the results, it may
be observed that the MMI training is relatively robust to the use
of possibly incorrect transcriptions. Even in the case of IT-0,
we find that the use of MMI training results in a SER reduction
of 2.5% and a WER reduction of 0.5%, compared to figures
reported in our previous study of 22% and 3% respectively.

One other evaluation refers to the use of the tri-grapheme
re-estimation and the two different lattice building methods,
word and grapheme-level lattices. The 5 acoustic models are
evaluated from a SER and WER point-of-view, and the re-
sults are presented in Table 2. The numerator lattices are built
from the confident data obtained with the baseline AM. Acous-
tic model descriptions are as follows:3 (1)ML-MG - baseline
ML trained mono-grapheme acoustic models; (2)ML-TG -
ML trained tri-grapheme acoustic models; (3)MMI-MG-WD
- MMI trained mono-grapheme AM using word-level lat-
tices;(4)MMI-MG-GR - MMI trained mono-grapheme AM us-
ing grapheme-level lattices; (4)MMI-TG - MMI trained tri-
grapheme AM with word-level lattices; (5)TG-MMI-MG -
MMI trained mono-grapheme AM with grapheme-level lattices
and then re-estimated into tri-grapheme models.

2See [16] for the initial acoustic model description
3Numbers correspond to those in Fig. 3

http://librivox.org/a-tramp-abroad-by-mark-twain/


Table 2: SER and WER for the entire data using different acous-
tic models and the confident utterances as training data. Refer-
ence is the gold-standard transcript.

Acoustic Model SER WER
[%] [%]

(1) ML-MG 18.72 2.43
(2) ML-TG 17.44 5.88
(3) MMI-MG-WD 17.62 2.25
(4) MMI-MG-GR 17.40 2.24
(5) MMI-TG-WD 14.98 3.59
(6) TG-MMI-MG 12.15 1.84

Table 3: The percentage of confident data and the error rates
for each acoustic model. SER and WER are computed against
the gold-standard transcript.

Acoustic Model Percent SER WER
[%] [%] [%]

(1) ML-MG 54.10 7.64 0.5
(2) ML-TG 70.11 8.29 1.32
(3) MMI-MG-WD 57.01 9.36 0.61
(4) MMI-MG-GR 59.29 9.85 0.57
(5) MMI-TG-WD 70.37 7.54 0.87
(6) TG-MMI-MG 75.88 7.59 0.80

Although the error rates for the tri-grapheme re-
estimated models (ML-TG), and the grapheme-level lattices
(MMI-MG-GR) do not show a significant decrease for the
overall SER and WER, we will show that their advantages
are important when determining the confident amount of data
aligned. However, when doing both word-level training and
tri-grapheme re-estimation (TG-MMI-MG) going from baseline
mono-grapheme (ML-MG) models, the overall improvement is
of 6.5% in SER and 0.6% in WER. This means that even with
the poor acoustic models, this method manages to correctly
align almost 90% of the original data. However, the final re-
sults are also influenced by the choice of confidence measure
[29].

Note that the most important goal of the whole process is to
be able to extract greater quantities of data from the speech and
text resources available. Considering this aim, Table 3 presents
the proportion of confident alignments obtained by each of the
above acoustic models, along with their SER and WER. The
acoustic model description is as above. Observe that simply
by moving from the ML mono-grapheme models (ML-MG) to
ML tri-grapheme models (ML-TG), the number of confident
alignments increases by 30%, going from 54.1% to 70.1%
while maintaining approximately the same error rates. Results
also show that grapheme-level lattices improve the confidently
aligned percentage by about 2% when comparing MMI-MG-GR
and MMI-MG-WD, and that word-level discriminative training
over tri-grapheme models, brings no relative improvement.

The best performing model, as expected, is the tri-
grapheme derived from the MMI-trained mono-graphemes
which results in an increase of 40% in the quantity of confident
data for the same levels of error. These results are compara-
ble in WER to those presented in [9], where good acoustic and
language models are used to align the data.

5. Discussion
Unsupervised or lightly supervised speech and text alignment
is an important prerequisite in the process of building text-to-
speech systems in a language or domain where language anal-
ysis and acoustic model building are difficult or expensive (i.e.
annotated speech resources are scarce and there is little or no
language expertise).

The method presented here, however, showed that using
only speech data and its approximate orthographic transcript,
almost 70% can be aligned4. The improvements obtained by
both the tri-grapheme and lightly supervised acoustic models
are significant, and amount to an overall increase of 40% while
maintaining the word and sentence error rates. In a separate
study, we obtained similar numbers for 14 other resources in 14
different languages [30]. Also, [31] showed no definite prefer-
ence towards TTS voices built on manually aligned data, as op-
posed to our ML approach. Therefore by increasing the amount
of confident data using tri-graphemes and discriminative train-
ing, the synthesis quality can only improve.

The major goal of this ongoing work is to be able to align
the entire speech resource available by taking into account au-
dio insertions and substitutions as well. The confidence mea-
sure may also be improved, so that the error rates of the confi-
dent files are close to 0%. Currently, the difference between the
computed accuracy of the models and the percentage of confi-
dent files emphasizes the need for a better confidence measure.
One other issue which might occur in found data is the different
recording conditions across sections or chapters of the speech
resource. A way to overcome the potential alignment problems
would be to use multi-condition training [32, 33].

6. Conclusions
This paper introduced a series of enhancements for poor
grapheme acoustic models used in the alignment of speech
and text data. Extending the mono-grapheme models to
tri-graphemes and then performing discriminative training at
grapheme-level increased the percent of extracted confident
data by 40% in the same SER and WER conditions. Compared
to other studies on limited domain recognition, our methods are
based only on the available data and use minimal user interven-
tion and language expertise.
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