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Abstract
When using data retrieved from the internet to create new
speech databases, the recording conditions can often be highly
variable within and between sessions. This variance influences
the overall performance of any automatic speech and text align-
ment techniques used to process this data. In this paper we dis-
cuss the use of speaker adaptation methods to address this issue.
Starting from a baseline system for automatic sentence-level
segmentation and speech and text alignment based on GMMs
and grapheme HMMs, respectively, we employ Maximum A
Posteriori (MAP) and Constrained Maximum Likelihood Lin-
ear Regression (CMLLR) techniques to model the variation in
the data in order to increase the amount of confidently aligned
speech. We tested 29 different scenarios, which include rever-
beration, 8 talker babble noise and white noise, each in various
combinations and SNRs. Results show that the MAP-based seg-
mentation’s performance is very much influenced by the noise
type, as well as the presence or absence of reverberation. On
the other hand, the CMLLR adaptation of the acoustic models
gives an average 20% increase in the aligned data percentage
for the majority of the studied scenarios.
Index Terms: speech alignment, speech segmentation, adaptive
training, CMLLR, MAP, VAD

1. Introduction
For any corpus-based speech synthesis system or automatic
speech recognition system, one of the most important consid-
erations is the selection of high quality speech data for train-
ing purposes. For a limited number of languages, such as En-
glish, Spanish, French, and German, developers can chose from
many widely available specifically-prepared resources. How-
ever, for most of the world’s languages such speech databases
are not readily available. Even for apparently well-resourced
languages, the specific content of available data might not be
suitable for a particular need – for example data in a sports
news speaking style would probably not be as readily available
as broadcast news data. In such situations, new resources ei-
ther need to be recorded from scratch, or created from existing
sources such as podcasts or audiobooks. To manually process
sufficient data – for example, transcribing the words – would
be time consuming and expensive, and thus a barrier to creat-
ing speech recognition or synthesis systems for new domains or
new languages.

Automatic alignment of speech with imperfect transcripts
has already been well addressed in the previous work of oth-
ers, for example [1, 2, 3, 4, 5, 6, 7]. Unfortunately, all of these

approaches make use of expert knowledge and/or expensive re-
sources, such as very good speaker-independent acoustic mod-
els or large vocabulary ‘biased’ language models, and therefore
can only be applied to languages where these resources exist.

In our own previous work [8, 9, 10], we introduced a
lightly supervised method for automatically aligning speech
data with imperfect transcripts that does not rely on such re-
sources. Our method comprises two main components: a
GMM-based sentence-level segmentation algorithm, and an
alignment step which uses incrementally-trained grapheme-
level acoustic models to determine the correct orthographic
transcription of the segmented utterances. Both steps are lightly
supervised, in the sense that they need only small amounts of
manual initialisation before proceeding in a fully automatic way
with no further intervention from the user, and all statistical
models used are learned solely from the speech and text being
aligned. Baseline results and evaluations were obtained using
a Librivox audiobook recording1 of A Tramp Abroad by Mark
Twain, but we have since successfully applied the algorithms to
audiobooks in 14 different languages, thus creating the TUN-
DRA corpus [11].

The success of a speech/text alignment algorithm can be
quantified in terms of amount of speech data ‘harvested’ with
correctly aligned transcriptions. While building the TUNDRA
corpus, we found that most of the Librivox audiobooks we used
had recording conditions that were highly variable within a sin-
gle book across the different chapters, and that this led to lower
harvesting rates. That is, a lower percentage of the data was
aligned than expected, especially for chapters where the record-
ing conditions were very different from the book average. Al-
though it can be argued that this noisy data would be better
left out of the final speech resource, in many applications the
amount of training data is more important than its recording
quality and maximising the amount of data aligned is the pri-
mary concern. We have therefore been investigating ways to
improve the amount of data harvested.

In this paper we apply two adaptation methods to the
two main stages of our method: Maximum A Posteriori
(MAP) adaptation for the GMM-based segmentation algo-
rithm, and Constrained Maximum Likelihood Linear Regres-
sion (CMLLR) transform-based adaptation for the acoustic
models (HMMs) used in the alignment step. We show that
by employing these techniques, our alignment results for noisy
data significantly improve in both the percentage of data aligned

1http://librivox.org/a-tramp-abroad-by-mark-twain/
read by John Greenman



and in the accuracy of the aligned data. Although these are stan-
dard adaptation procedures, there were some challenges in us-
ing them in this context: for MAP, we need to devise a process
for selecting the adaptation data in accordance with the specific
structure of audiobooks; for CMLLR, the lack of accurate tran-
scripts for the adaptation data, and the use of grapheme-level
acoustic models, posed particular problems.

The paper is structured as follows: Sections 2 and 3 present
the adaptation methods used for the segmentation and alignment
stages respectively. The results obtained with these methods on
sets of noisy data are evaluated in Section 4, while Section 5
concludes the paper and discusses future work.

2. Lightly Supervised Speech Segmentation
using MAP Adaptation

In [8] we proposed a lightly supervised sentence-level segmen-
tation tool based on Gaussian Mixture Models (GMM) which is
an extension of a method widely used for Voice Activity Detec-
tion (VAD). The core idea was to train two GMMs: one from the
speech segments, and the other from the silence segments, of an
initial manually-labelled data set of only 10 minutes of speech.
The GMMs were then used to estimate the log likelihood of all
segments of the full data being silence or speech. Because short
silent pauses can occur within running speech, the algorithm
was tuned to detect only sentence boundaries, and not within-
sentence pauses. A threshold for discriminating between short
pauses and silence was automatically calculated by fitting two
Gaussians (one for extended silence and one for short pauses)
to the durations of these two types of silent sections, using the
manually-labelled data. Results showed a 96% accurate detec-
tion rate. Another aspect of performance that we evaluated was
the effect of this VAD-based segmentation on the final quality
of synthetic voices built from this data. By training two text-
to-speech systems, one with a GOLD standard (i.e., manually
verified and corrected) segmentation and one with the VAD-
based one, we determined that the VAD-based voice had only a
marginally, and statistically insignificantly, lower quality.

While the above techniques work well on consistent, clean
speech, when used on the data being prepared for the TUN-
DRA corpus it was found that using GMMs trained only on the
small set of manually-labelled data did not give good perfor-
mance across all the remaining data. This was because they did
not capture the correct distributions for silence and speech in
the varying noise environments and speaking styles. Therefore,
we propose a method to adapt the initial GMMs on a chapter-
by-chapter basis. The workflow employed in performing this
adaptation and segmentation is presented in Figure 1 and com-
prises the following steps:

1. Initial training – initial GMMs for speech and silence
are trained on the labelled data;

2. 1st decoding – label the speech and silence parts of all
chapters using these initial GMMs;

3. Data selection – apply a confidence measure to each
such speech or silence part, selecting only the confident
data;

4. MAP adaptation – adapt the GMMs using a standard
MAP algorithm [12, 13, 14, 15] to this data;

5. 2nd decoding - re-label the speech and silence parts
of all chapters using the adapted GMMs. Segment the
chapter at every silence mid-point.

The data selection step described above is used to select
the speech and silence segments which are considered to be
confidently-labelled and thus suitable as adaptation data. The

Figure 1: Overview of the MAP adaptation method for the
GMM-based VAD.

confidence score or measure we use is based on a log likelihood
ratio (LLR) computed for each segment against the respective
GMM. Figure 2 shows an example of these histograms for the
speech and silence parts of the data corrupted with babble talk
noise at 35dB: (a) represents the LLR histogram without adap-
tation; (b) is the histogram after performing MAP adaptation on
all the speech and silence parts resulting from the 1st decoding;
and (c) is the histogram after MAP adaptation using only the
confident segments. This shows that performing adaptation us-
ing all the data from the 1st decoding leads to mis-classification
of audio segments: the discriminative power of the GMMs is
reduced by 18% (compare distance between peaks in Figure 2
(a) with (b)). On the other hand, if data selection is carried out,
the histogram plots show an increase in the distance between
the average LLRs by 11% (Figure 2 (b) with (c)).

3. Speech Transcription Alignment using
CMLLR Adaptation

[9] introduced a lightly supervised and low-resource method for
sentence-level alignment of speech with imperfect transcripts.
The method incrementally trains grapheme-level acoustic mod-
els on the available speech and text data, starting from an ini-
tial 10 minute manual orthographic speech transcription2. In
order to alleviate the consequences of having rather poor acous-
tic models, the Viterbi decoder was highly restricted by using
a so-called skip network. The network allows the speech to be
matched to any point within an estimated broad text window,
but constrains the output to be a consecutive sequence of words
from it. To deal with audio deletions, a more relaxed skip net-
work, called a 3-skip network, can be used which allows a max-
imum 2 word skip within the hypothesised sequence. To pre-
vent unwanted skips, a bigram language model built from the
available text was also used to limit to some extent the 3-skip
network. The confidently aligned utterances were then obtained
by comparing the recognition acoustic scores using the differ-
ent types of skip networks. These utterances were then used
to retrain the acoustic models, and the process repeated for a
couple of iterations. Results from this method showed a 54.1%
aligned percentage with 7.64% SER (sentence error rate) and
0.5% WER (word error rate).

Following this, in [10] we increased the alignment per-
centage by almost 40% (relative) through the use of context-
dependent tri-grapheme models and MMI discriminative train-
ing. The confidently aligned data then amounted to 75%, with
similar sentence and word error rates as in the previous work.

Despite this good performance on our test audiobook (for
which we have the GOLD standard alignments required to com-

2The same 10 minutes of labelled speech data for the VAD can be
used for the aligner as well



Figure 2: Segment LLR histograms for silence and speech data calculated for (a) VAD without MAP adaptation, (b) MAP VAD without
data selection and (c) MAP VAD with data selection. The data on which they are estimated was corrupted with babble talk noise at
35dB.

pute SER and WER), when applying the above procedures to
other audiobooks from Librivox, we found that the variable
recording conditions across chapters (e.g. more background
noise as a result of variable distance from the microphone, or
worse room acoustics) caused the aligned percentage to drop
below 40% for the worst chapters.

To address this problem, we turn to adaptive training meth-
ods commonly used in automatic speech recognition and in this
paper we propose the use of CMLLR [16], originally proposed
for speaker adaptation, for adaptation to the varying channel
or environmental conditions found in audiobooks. The CM-
LLR technique estimates a set of linear transforms for each
condition—shared between multiple Gaussians—in a maxi-
mum likelihood fashion, making it robust to estimation when
the initial transcripts are poor, and allowing effective use of lim-
ited adaptation data.

Here we apply CMLLR adaptation to the discriminatively-
trained tri-grapheme acoustic models presented in [10] to adapt
to the noisy data. Although the poor recognition accuracy over
the noisy speech means that the quality of the adaptation tran-
scripts is also quite low, the results show that by using only one
or two chapters as adaptation data, the SER and the percentage
of aligned data are substantially improved.

4. Results
4.1. Simulated Noisy Speech Recordings

To test our approach, it is necessary to be able to compute SER
and WER, for which we need GOLD transcripts. We there-
fore once again used the Librivox audiobook A Tramp Abroad
by Mark Twain and degraded two chapters of the audiobook
(approx. 28 minutes of speech) by adding noise and/or rever-
beration to simulate the noisy data found in real recordings in a
controllable way.

Through informal evaluation, we determined which con-
ditions approximated those observed in the TUNDRA corpus
and similar found data. For reverberation, we convolved the
speech with the impulse response of a domestic living room,
taken from the Open Air Library [17]. The background noise
conditions were replicated using either 8-talker babble or white
noise at the following signal-to-noise ratios (SNRs): 10, 15, 20,
25, 30, 35 and 40dB. A total of 29 testing scenarios were ob-
tained this way: reverb; babble noise at each SNR; white noise
at each SNR; reverberation and babble noise at each SNR; re-
verberation and white noise at each SNR. Although 10dB and

15dB SNRs are highly unlikely (i.e., very noisy) for audiobook
recordings, these scenarios were kept as points of comparison to
evaluate the adaptive power of the acoustic models even when
the accuracy of the transcripts is very low.

4.2. GMM VAD with MAP adaptation

We present the evaluation of three versions of VAD: without
MAP adaptation; with MAP adaptation, but without data selec-
tion; and with MAP adaptation and with data selection. The
CORR measure is computed as [18]:

CORR = 100− (FEC + MSC + OV ER + NDS) : (1)

where the right hand side measures represent (as percentages):

• FEC - Front End Clipping - speech classified as silence
when passing from silence to speech;

• MSC - Mid Speech Clipping - speech classified as si-
lence within a speech sequence;

• OVER - silence interpreted as speech at the end of a
speech segment;

• NDS - Noise Detected as Speech - silence interpreted as
speech within a silence part.

Figure 4 shows the CORR measure for each environment.
The results show a high dependency on the type of noise and
the SNR. For white noise, MAP adaptation gave great improve-
ments at high SNRs. At low SNRs, because of the fact that
the initial GMMs were unable to discriminate between speech
and silence—all segments were labelled as speech—there are
no differences in the CORR measure for the 3 VAD types. The
high value of the CORR measure is a result of the fact that the
speech segments are much longer than the silence segments, and
this influences the FEC and MSC values.

For babble noise, there are noticeable advantages of using
MAP, but only for mid-range SNR values. At low and high
SNRs, the CORR value is similar to that when no adaptation is
used.

When adding reverberation to the clean data, MAP adap-
tation performs better without the data selection step. This is
also true in the case of reverberation and babble talk noise. This
may be due to mismatch of the threshold for data selection in
these environments. We used the threshold which was the most
appropriate for 35dB of babble noise across all environments.

In contrast, VAD without MAP adaptation showed higher
CORR across all SNRs for reverberation plus white noise. But



Figure 3: Segment LLR histograms for silence and speech data calculated for (a) VAD without MAP adaptation, (b) MAP VAD
without data selection and (c) MAP VAD with data selection. The data on which these examples were estimated was corrupted with
reverberation and white noise at 15dB.

when examining the LLR histogram for this condition (see Fig-
ure 3), adaptation seems increase the discriminative power of
the GMMs. This leads us to believe that white noise plus re-
verberation has the most damaging effect on the GMM-based
VAD, and that alternative methods for dealing with this type of
scenario must be investigated.

4.3. CMLLR Acoustic Model Adaptation

As described in Section 3, the baseline acoustic models built on
the clean data were adapted using the simulated noisy speech
data. The adaptation transcripts were obtained from the baseline
models using a 1-skip network. For each noisy scenario, we
computed the SER and WER of the entire noisy data, as well
as the amount of confident data obtained (i.e., the percentage
aligned) with its corresponding SER. WERs for the confident
data are on average below 1%, do not seem to be influenced by
the adaptation step, and are therefore not presented.

Figures 5 and 6 present the SER and WER of the entire
noisy data respectively. The SER and WER values are com-
puted for the text aligned using the adapted acoustic models, as
compared to the GOLD standard transcripts. As expected, SER
and WER are reduced by the use of adaptation, especially at
low SNRs. The type of noise has a strong influence on the over-
all performance: white noise in conjunction with reverberation
has the most damaging effect on the performance of the clean
acoustic models. One other thing worth noting is the fact that,
although the SER in some cases is quite high, the correspond-
ing low WER makes adaptation possible. For example in the
case of white noise at 20dB SNR, the SER is around 70%, but
the WER is around 20%. The adaptation in this case improves
both the WER and SER of the entire noisy data by a substantial
amount (approx. 50% for SER and 20% for WER).

The improvement in the SER and WER of the noisy data
through adaptation would mean nothing unless it also influences
the aligned data percentage. In figure 7 we present this influ-
ence. The bars in the figure represent the percent of confident
data with its relative SER. Again, the adaptation makes the per-
cent of confident data increase, and also lowers its SER. The
average increase in confident data percentage is 20%, with a
maximum of 62% for the reverberation and white noise at 25dB
scenario. In extreme cases, the adaptation did not help (such as
white noise at 10dB and 15dB, reverberation and babble noise
10dB, reverberation and white noise 10dB and 15dB), but these
are almost certainly not of interest anyway, if the speech is go-
ing to be used to build a speech synthesiser.

Note that the numbers presented in this section are not di-
rectly comparable to those in [10], because here we are evaluat-
ing only a small subset of the audiobook, and not its entirety.

5. Conclusions
In this paper we have shown the advantages of using adaptive
techniques in order to improve the alignment accuracy of text
with corresponding noisy and/or reverberated speech, which for
experimental purposes was created by simulating the conditions
we have observed in various typical non-professional audio-
books.

The speech segmentation algorithm performance is highly
dependent on the noise characteristics, giving variable improve-
ments across the tested scenarios. The presence of reverberation
leads to unexpected results in terms of the CORR measure, and
the white noise plus reverberation renders the adaptation inef-
fective. On the other hand, when applying adaptation to the
acoustic models of the speech aligner, the amount of confident
data increases in all scenarios, resulting in an average 20% im-
provement. It also reduces the SER of this data.

Future work includes the evaluation of the effect of adapta-
tion for both segmentation and alignment on the confident data
percentage. Another technique which can be employed is to
cluster data based on recording environments, and do cluster-
based adaptation (rather than chapter-based). We would also
like to investigate the influence of the VAD indices (CORR,
FEC, MSC, OVER and NDS) on the TTS system’s quality
when using various noise environments and amount of adap-
tation data.
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Figure 4: CORR measure for each VAD method: using no adaptation, with MAP adaptation but without data selection and with MAP
adaptation and data selection.

0

10

20

30

40

50

60

70

80

90

100

10
dB

15
dB

20
dB

25
dB

30
dB

35
dB

40
dB

10
dB

15
dB

20
dB

25
dB

30
dB

35
dB

40
dB

10
dB

15
dB

20
dB

25
dB

30
dB

35
dB

40
dB

10
dB

15
dB

20
dB

25
dB

30
dB

35
dB

40
dB

Original Reverb Babble Noise White Noise Reverb and Babble Noise Reverb and White Noise

SE
R[

%
] 

No Adaptation With CMLLR Adaptation

Figure 5: SER for each noisy and reverberant data set, with and without CMLLR adaptation. SER is computed on the retrieved text for
each acoustic model against a GOLD standard transcription.
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Figure 6: WER for each noisy and reverberant data set, with and without CMLLR adaptation. WER is computed on the retrieved text
for each acoustic model against a GOLD standard transcription.
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